
J Eng Math (2009) 63:51–59
DOI 10.1007/s10665-008-9245-z

A new method for the solution of convolution-type dual
integral-equation systems occurring in engineering
electromagnetics

F. Delfino · R. Procopio · M. Rossi

Received: 21 February 2007 / Accepted: 20 August 2008 / Published online: 12 September 2008
© Springer Science+Business Media B.V. 2008

Abstract A general method for the solution of dual integral-equation systems is discussed in the context of
applications in engineering electromagnetics. The approach follows a formulation based on a Fourier-series expan-
sion of the unknown function and a successive expansion in a Neumann series of the Fourier-series coefficients. It
is characterized by better convergence properties than classical numerical techniques usually adopted to solve the
same class of problems and low computational costs. The efficiency and the performance of the proposed method
are illustrated using the example of a typical electrostatic problem: the evaluation of the charge distribution of a
hollow conducting cylinder, starting from the knowledge of the potential on the surface.

Keywords Convolution-type integral equations · Electrostatic problems · Fourier-series expansion

1 Introduction

A wide category of problems in engineering science can be reduced to a standard form involving dual integral
equations [1,2]. Some examples can be found in the theory of elasticity, hydrodynamics, acoustics and electro-
magnetism, where the so-called crack, slot and strip canonical problems (see, e.g., [3, Chap. 4]) have fascinated
researchers for a long time.

In many instances, the dual integral-equation system originates from the conversion of a boundary-value problem
or an initial-value problem associated with a partial or an ordinary differential equation [4, Chap.
1–2], but many problems lead directly to integral equations and cannot be formulated in terms of differential
equations.

Generally speaking, there is a large variety of numerical methods for the treatment of integral equations,
depending on the character of the kernel, which is usually the main factor governing the choice of an appro-
priate quadrature formula or system of approximating functions. Various commonly occurring types of singularity
call for individual treatment. Likewise, provisions can be made for cases of symmetry, periodicity or other spe-
cial structures, where the solution may have special properties and economies may be effectuated in the solution
process.

Integral equations arising in electromagnetism often have the form of Fredholm equations of the first kind,
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52 F. Delfino et al.

b∫

a

k (x, y, b (y)) dy = f (x), a < x < b, (1.1)

where k(x, y, b(y)) is the kernel function, b(x) the unknown function to be determined and f (x) the free term.
If the kernel has the form

k(x, y, b(y)) = k(x − y)g(y, b(y)), (1.2)

the equation is called a convolution integral equation and the typical solving strategy is to resort to enhanced ver-
sions of the method of moments or to numerical techniques based on the use of suitable orthogonal polynomials
[5, Chap. 2], [6, Chap. 3].

Recently, a new method of solution for systems of dual integral equations has been proposed by Eswaran [7],
who showed under which hypotheses the solution can exist, is unique and can be expressed as a Neumann series.
Eswaran’s work represents an exhaustive theory concerning dual integral equations of convolution-type and pro-
vides an effective and elegant procedure to cope with these. The main distinguishing feature of Eswaran’s work is
that the solution is obtained without adopting simplifying assumptions, as it typically happens in classical theories
on the subject [3, Sect. 1.10], [7]. On the other hand, the major drawback of the approach, as the author himself
has recognized, is its high computational cost. Actually, the method requires the construction of a matrix, whose
elements are represented by integrals involving the Fourier transform of the integral-equation kernel and first-kind
Bessel functions. Moreover, these integrals are highly oscillating and “slowly convergent” (quoting the author).
This drawback deeply penalizes the use of Eswaran’s approach for the solution of engineering or practical problems.

In the present paper, a complete reformulation of Eswaran’s method will be introduced in terms of Fourier series
rather than Fourier transforms and it will be demonstrated how this new approach leads to an equivalent algebraic
system, where matrix coefficients are evaluated by means of summations instead of integrals. This way will enable
to significantly reduce the computational costs of the algorithm without loosing accuracy of the results.

The paper is organized as follows. In Sect. 2, the developed general method of solution is presented. Then, in
Sect. 3, the method is applied to the solution of an electrostatic problem and, finally, in Sect. 4, some concluding
remarks are given.

2 Statement of the problem and solution of the integral-equation system in terms of Fourier series

Many engineering or physics problems frequently lead to integral equations, which can be put in the following
form:⎧⎪⎪⎨
⎪⎪⎩

+1∫

−1

f (x − y)a(y) dy = T (x), |x | < 1,

a(x) = 0, |x | > 1,

(2.1)

a being the unknown function, f the kernel and T the free term.
If one defines

ã(x) =
⎧⎨
⎩

a(x), |x | < 1,
0, 1 < |x | < 2,
ã(x − 4), in general,

(2.2)

f̃ (x) =
{

f (x), |x | < 2,
f̃ (x − 4), in general,

(2.3)

it can be observed that ã and f̃ are periodic functions.
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Let us assume that they can be expanded in Fourier series, namely

ã(x) =
+∞∑

k=−∞
Akeik π2 x , (2.4)

and

f̃ (x) =
+∞∑

k=−∞
Fkeik π2 x , (2.5)

where

Ak = 1

4

2∫

−2

ã(x)e−ik π2 x dx, (2.6)

and

Fk = 1

4

2∫

−2

f̃ (x)e−ik π2 x dx . (2.7)

With these definitions, Eq. 2.1 becomes:
+2∫

−2

f̃ (x − y)ã(y) dy = T (x), |x | < 1. (2.8)

Applying the convolution theorem to the L.H.S. of (2.8), one can write:
+2∫

−2

f̃ (x − y)ã(y) dy = 4
+∞∑

k=−∞
Ak Fkeik π2 x . (2.9)

As a consequence, Eq. 2.8 becomes:

4
+∞∑

k=−∞
Ak Fkeik π2 x = T (x), |x | < 1. (2.10)

Now, let us assume that

Fk �= 0, ∀k, (2.11)

and that, for some fixed real number I

limk
Fk

k I
= � (2.12)

with

� ∈ R, � �= 0. (2.13)

Choosing an integer p such that p − 1 ≤ I ≤ p, Ak can be written in the following form

Ak =
∞∑

n=0

sn
Jn+p

( kπ
2

)
( kπ

2

)p , (2.14)

where J is the Bessel function of the first kind and sn are coefficients which must be determined. This can be
achieved by simply recalling that in [7] it is shown that any function A whose Fourier transform a is of compact
support can be expanded in a Neumann series, namely:

A (u) =
∞∑

n=0

sn
Jn+p(u)

u p
. (2.15)
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Now, combining the definition of A(u) with the second of (2.1), one can obtain:

A(u) =
1∫

−1

a(x)e−iux dx . (2.16)

On the other hand, inserting the definition of ã into (2.6), one has:

Ak = 1

4

1∫

−1

a(x)e−ik π2 x dx . (2.17)

Comparing (2.16) with (2.17), it is clear that:

Ak = 1

4
A

(
kπ

2

)
, (2.18)

which ensures the validity of (2.14).
In Appendix A it is proved how Eq. 2.14 satisfies the second of (2.2) identically. At this point, the following

functions can be defined:

ψn(x) = α
(p)
n

∞∑
k=−∞

Fk
Jn+p

( kπ
2

)
( kπ

2

)p eik π2 x , (2.19)

where α(p)
n is a normalization constant to be determined.

Substituting (2.14) and (2.19) in (2.10), one obtains:

T (x) =
∞∑

n=0

sn

α
(p)
n

ψn(x), (2.20)

Let us construct a set of function φm , m = 0, 1, 2, . . ., that is biorthogonal to the set ψn

1∫

−1

φm(x) ψn(x)dx = δmn, (2.21)

where δmn is the Kronecker operator. Then it follows that

sn

α
(p)
n

=
1∫

−1

φm(x) T (x) dx . (2.22)

Once the value of α(p)
n is suitably chosen (it will be specified later), the value of sn can be derived, thus enabling

the problem solution.
In order to find a suitable expression forφm(x), the functionψn is expanded in a series of Gegenbauer polynomials

C (p)
m :

ψn(x) =
∞∑

m=0

BmnC (p)
m (x). (2.23)

Recalling the orthogonality relation [8, Eq. 7.313], which states that

1∫

−1

(1 − x2)p− 1
2 C (p)

m (x) C (p)
n (x)dx = γ

(p)
m δnm, (2.24)
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where γ (p)m = π
m!

21−2p

(m+p)
�(2p+m)
[�(p)]2 , one may simply derive the expression for the coefficients Bmn multiplying Eq. 2.23

by the quantity (1 − x2)p− 1
2 C (p)

r (x) and integrating over the range (−1, 1), that is to say:

Brn = 1

γ
(p)
r

1∫

−1

(1 − x2)p− 1
2 ψn(x) C (p)

r (x) dx . (2.25)

Inserting (2.19) into (2.25) and using (A.2), one easily gets:

Bmn = 2πα(p)
n β

(p)
m

γ
(p)
m

∞∑
k=0

Fk
Jn+p

( kπ
2

)
Jm+p

( kπ
2

)
( kπ

2

)2p , (2.26)

where β(p)
m = ( 1

2

)p im

m!
�(2p+m)
�(p) .

Upon assigning α(p)
n = β

(p)
n

γ
(p)
n

, the matrix B with entries Bmn becomes symmetric. At this point, defining a matrix

G with entries Gms such that

φm(x) =
∞∑

s=0

1

γ
(p)
s

Gms(1 − x2)p− 1
2 C (p)

s (x), (2.27)

we can impose the requirement (2.21), which means that the following condition must hold:

G = B−1. (2.28)

In Appendix B it is shown that B−1 always exists.
The expression for G can now be inserted into (2.27) to build up the set φm ; then, using (2.22), the coef-

ficients sn can be found and finally, using (A.2), which states that πβ
(p)
n
2

Jn+p

(
kπ
2

)p

(
kπ
2

)p is the Fourier coefficient of

(
1 − x2

)p−1/2
Ĉ (p)

n (−x), one obtains:

ã(x) =
∞∑

n=0

2sn

πβ
(p)
n

Ĉ (p)
n (−x)(1 − x2)p−1/2 (2.29)

3 Application: evaluation of the charge distribution on the surface of a hollow conducting cylinder

In this section, the proposed method is applied to the electrostatic problem of determining the charge distribution
of a hollow conducting cylinder, once the potential V is known along its surface. In engineering electromagnetics,
the solution of this problem represents the first step of the procedure leading to the evaluation of the cylinder
capacitance, which in turn is useful for the calculation of the capacitance matrix of a system of multiconductor
transmission lines (MTL) of finite length [9].

Let us consider the situation sketched in Fig. 1, where a perfectly conducting cylindrical tube with negligible
thickness is surrounded by a dielectric medium of constant ε; the cylinder does not have end-caps. The axis of the
cylinder lies along the z-axis of a system of cylindrical coordinates (r,φ,z), whose origin is at the center of the tube.
The radius of the cylinder is R and the height is 2h. The surface of the cylinder, defined by r = R and −h < z < h,
has potential V .

It is well-known [10, Chap. 3], [11, Chap. 3] that, if all the charges ρ are contained in a finite volume τ , the
potential can be assumed zero at infinity and can be written in the form:

V (P) = 1

4πε

∫ ∫ ∫

τ

ρ(P0)

|P − P0| dτ, (3.1)
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Fig. 1 Geometry of the
model problem

where P(r, φ, z) is the observation point and P0(r0, φ0, z0) the source point. The integration of (3.1) has to be
performed over all the sources of the potential field, and this requirement makes it impossible to obtain a direct
solution of the problem, since the function ρ is not known. However, due to the assumptions made, the charge
distribution of (3.1) degenerates into one on the surface, σ(z), and (3.1) becomes:

V (r, z) = R

4πε

h∫

−h

σ(z0)

⎡
⎣

π∫

−π

d(φ − φ0)√
r2 + R2 − 2r R cos(φ − φ0)+ (z − z0)

2

⎤
⎦ dz0. (3.2)

The azimuthal symmetry implies that only the difference � = φ − φ0 is of any significance in (3.2). In order
to obtain the integral equation to be solved in the unknown σ , one can place the point P on the cylinder surface,
where the potential is known, thus having:

V (R, z) = V = R

2ε

h∫

−h

σ(z0)g(z − z0)dz0, (3.3)

the kernel g being defined as:

g(x) = 1

2π

π∫

−π

d(�)√
4R2 sin2

(
�
2

) + x2
. (3.4)

Defining now x = z/h, y = z0/h, f (x) = g(hx) and a(x) = σ(hx), we can normalize (3.4) and rewrite it in the
form (2.1), where the term T (x) is the constant V , namely:

V = Rh

2ε

1∫

−1

a(y) f (x − y) dy. (3.5)

Furthermore, it is clear that a = 0 for |x | > 1. The kernel f is an improper integral that can be rewritten as a
complete elliptic integral of the first kind [8, Chap. 6]; it exhibits a logarithmic singularity for x = 0, namely

f (x) = − 1

πR
log

( |x |
8R

)
+ b(x), (3.6)

where b is regular in a neighborhood of the origin.
As can be seen, the kernel is square-integrable and so expansion (2.6) can be carried out. As far as the free term

is concerned, its Fourier expansion is possible, since it is constant.
Finally, with reference to (2.14), p = 0 can be chosen. This choice satisfies the behaviour of the charge density

at the wire ends [12]. In Fig. 2 the charge density is plotted as a function of the non-dimensional parameter z/h for
some values of the ratio R/h. The same results can be obtained with Eswaran’s method; the main difference is in the
CPU time required by the two approaches. As a matter of fact, our method is less time-consuming (about 100 times
faster), since it does not require the evaluation of improper integrals of the highly oscillating Bessel functions [7].
It should be noted that only five terms of the summation (2.29) are needed to get the final value.

Finally, the evaluation of the charge distribution on the cylinder surface allows us to determine the capacitance
of the cylinder, which is defined as [11, Chap. 4]:

C = 2πR

V

h∫

−h

σ(z) dz = 2πR

V

h∫

−h

σ(z) dz = 2πRh

V

1∫

−1

ã
( z

h

)
dz. (3.7)
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Fig. 2 Charge density on
the hollow cylinder surface

Fig. 3 Capacitance of the
hollow cylinder

Recalling (2.29) and the orthogonality of the Gegenbauer polynomials, one can conclude that only the first term of
the summation (2.29) is required. The value of the capacitance as a function of the ratio h/R is plotted in Fig. 3 and
compared with the classical expression [11, Chap. 4] evaluated in the case of an infinitely long cylinder, with good
agreement between the two approaches, as the quantity h/R increases.

4 Conclusions and perspectives of future work

An effective method to solve a class of dual integral equations has been presented in this paper. It has been shown
that it consists of a complete reformulation in terms of Fourier series rather than Fourier transforms of the dual
integral-equation theory developed by Eswaran [7]. The method has been applied to a relevant problem in the
context of engineering electromagnetics: the evaluation of the charge distribution on the surface of a hollow con-
ducting cylinder and the consequent calculation of the capacitance of the same cylinder. Numerical results have
demonstrated that the method is reliable and characterized by fast performance.

Work is in progress in order to extend the mathematical proof to the case of integro–differential equations that
actually are not completely covered by the expounded theory. Finally, further investigations will be carried out to
apply the developed method to equations describing other electromagnetic phenomena.
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Appendix A

The purpose of this section is to show that expansion (2.14) satisfies the second of (2.2) identically, that it is
equivalent to write:

ã(x) =
∞∑

n=0

Sn

+∞∑
k=−∞

Jn+p
( kπ

2

)
( kπ

2

)p eik π2 x = 0, 1 < |x | < 2. (A.1)

If one observes that [8, Eq. 7.321]

2∫

−2

(1 − x2)p−1/2Ĉ (p)
n (−x)e−i kπ

2 x dx = 2πβ(p)
n

Jn+p
( kπ

2

)p

( kπ
2

)p , (A.2)

having defined β(p)
n = ( 1

2

)p in

n!
�(2p+n)
�(p) and Ĉ (p)

m (x) as

Ĉ (p)
m (x) =

{
C (p)

m (x), |x | < 1,
0, 1 < |x | < 2,

(A.3)

where C (p)
m (x) is the Gegenbauer polynomial of mth order, one can state that

+∞∑
k=−∞

Jn+p
( kπ

2

)
( kπ

2

)p ei kπ
2 = 4

2πβ(p)
n

(1 − x2)p− 1
2 Ĉ (p)

n (−x) = 0 if 1 < |x | < 2, (A.4)

and conclude the proof.

Appendix B

In order to show that B−1 always exists, one must prove that the functions defined in (2.19) are linearly independent.
Recalling (A.2) and applying the convolution theorem to (2.19), one easily gets:

ψn(x) = α
(p)
n

2πβ(p)
n

2∫

−2

f̃ (x − y) (1 − y2)
p− 1

2 Ĉ (p)
n (−y) dy

= α
(p)
n

2πβ(p)
n

1∫

−1

f̃ (x − y) (1 − y2)
p− 1

2 C (p)
n (−y) dy. (B.1)

Furthermore, by defining

C̃ (p)
m (x) =

{
C (p)

m (x) |x | < 1,
0, |x | > 1,

(B.2)

the interval of integration in (B.1) can be extended to (−∞,+∞) without affecting the result:

ψn(x) = α
(p)
n

2πβ(p)
n

+∞∫

−∞
f (x − y)(1 − y2)

p− 1
2 C̃ (p)

n (−y) dy. (B.3)

Now, recalling that [8, Chap. 5]:
∞∫

−∞
(1 − x2)p−1/2C̃ (p)

n (−x)e−iux dx = 2πβ(p)
n

Jn+p(u)p

(u)p
. (B.4)

123



A new method for the solution of convolution-type 59

and that

F(u) =
+∞∫

−∞
f (x) e−iux dx, (B.5)

one can apply the convolution theorem to (B.3) and get:

ψn(x) = α
(p)
n

2π

+∞∫

−∞
F(u)

Jn+p(u)

un+p
eiux du. (B.6)

It is shown in [7] that the following functions are linearly independent:

hn(x) = α
(p)
n

+∞∫

−∞
F(u)

Jn+p(u)

un+p
eiux du. (B.7)

Therefore, by comparing (B.6) and (B.7), the linear independence of the functions ψn is proved.
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